首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The stabilization of microtubules in isolated spindles by tubulin-colchicine complex
Authors:T S Hays  E D Salmon
Abstract:We have analyzed the effect of colchicine and tubulin dimer-colchicine complex (T-C) on microtubule assembly in mitotic spindles. Cold- and calcium-labile mitotic spindles were isolated from embryos of the sea urchin Lytechinus variegatus employing EGTA/glycerol stabilization buffers. Polarization microscopy and measurements of spindle birefringent retardation (BR) were used to record the kinetics of microtubule assembly-disassembly in single spindles. When isolated spindles were perfused out of glycerol stabilizing buffer into a standard in vitro microtubule reassembly buffer (0.1 M Pipes, pH 6.8, 1 mM EGTA, 0.5 mM MgCl2, and 0.5 mM GTP) lacking glycerol, spindle BR decreased with a half-time of 120 s. Colchicine at 1 mM in this buffer had no effect on the rate of spindle microtubule disassembly. Inclusion of 20 microM tubulin or microtubule protein, purified from porcine brain, in this buffer resulted in an augmentation of spindle BR. Interestingly, in the presence of 20 microM T-C, spindle BR did not increase, but was reversibly stabilized; subsequent perfusion with reassembly buffer without T-C resulted in depolymerization. This behavior is striking in contrast to the rapid depolymerization of spindle microtubules induced by colchicine and T-C in vivo. These results support the current view that colchicine does not directly promote microtubule depolymerization. Rather, it is T-C complex that alters microtubule assembly, by reversibly binding to microtubules and inhibiting elongation. In vivo, colchicine can induce depolymerization of nonkinetochore spindle microtubules within 20 s. In vitro, colchicine blocks further microtubule assembly, but does not induce rapid disassembly.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号