首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Population dynamics and nutrient fluxes in an aquatic microcosm
Authors:Catherine A Elstad
Institution:(1) Department of Zoology, Washington State University, Pullman, WA 99164-4220, USA
Abstract:An aquatic microcosm, consisting of three spatially separated yet mutually dependent trophic levels, was established in the laboratory and monitored for 310 days. A three-fold research approach evaluates the experimental potential of this large, multicompartmental microecosystem. Realistic biological and chemical features and nutrient fluxes parallel identifiable patterns observed in natural aquatic ecosystems as well as in published laboratory observations. Two successional patterns developed in the autotrophic community: a sequential change in species composition and a progression from a one-compartment planktonic situation to a two-phased planktonic-attached system. Although the microcosm was initially seeded with an axenic culture of Cryptomonas ovata var. palustris Ehr, contamination by Chlorella, Scenedesmus, Closterium, and Anabaena occurred within 41 days. The appearance of attached algae, noted on day 5, marked the transition from a planktonically-based ecosystem to a heterogeneous system. Crashes in the cladoceran population occurred on days 103 and 202. The second collapse was final. Repeated attempts to reestablish Daphnia middendorffiana failed. Mineralization and nutrient cycling are recognizable properties of the microcosm. Ammonification, nitrification, and nitrogen assimilation occurred predominantly in the decomposer tank as did the regeneration of inorganic phosphorus. A peak on day 205 in the ammonia input to the algal tank drawn from beneath the bacterial filter bed followed a peak in total Kjeldahl nitrogen (TKN) (day 135) and preceded peaks in nitrate (day 219) and TKN (day 233). Although levels in the algal tank were undetectable after three weeks, dissolved orthophosphate was actively regenerated in the decomposer bed, recycled to the autotroph unit, and rapidly assimilated by the algae. Characteristic patterns of radiotracer circulation also were evident. Sequential movement of 32P from the dissolved compartment to phytoplankton to attached algae was proposed. Conversely, 14C was steadily incorporated into the phytoplankton compartment; filtrate activities fluctuated. Tracer behaviors in the cladoceran compartment were superficially cyclic. Carbon turnover times in the algal and zooplankton compartments were 17 and 11.11 hours, respectively. Indicative of the greater biological mobility of phosphorus, respective turnover times of 2.50 and 2.44 hours were similarly calculated for phosphorus. Unlike dissolved carbon which had a turnover time of 625 hours, dissolved phosphorus was rapidly cycled into the algae (turnover time = 0.58 h).
Keywords:aquatic microecosystem  autotrophs  cladocera  mineralization  nutrient cycling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号