首页 | 本学科首页   官方微博 | 高级检索  
     


A Monte Carlo method for Bayesian analysis of linkage between single markers and quantitative trait loci. I. Methodology
Authors:G. Thaller  I. Hoeschele
Affiliation:(1) Department of Dairy Science, Virginia Polytechnic Institute and State University, 24061-0315 Blacksburg, VA, USA;(2) Present address: Lehrstuhl fuer Tierzucht, Technische Universität Muenchen, D-85350 Freising-Weihenstephan, Germany
Abstract:A Bayesian approach to the statistical mapping of Quantitative Trait Loci (QTLs) using single markers was implemented via Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation and hypothesis testing. Parameter estimators were marginal posterior means computed using a Gibbs sampler with data augmentation. Variables sampled included the augmented data (marker-QTL genotypes, polygenic effects), an indicator variable for linkage, and the parameters (allele frequency, QTL substitution effect, recombination rate, polygenic and residual variances). Several MCMC algorithms were derived for computing Bayesian tests of linkage, which consisted of the marginal posterior probability of linkage and the marginal likelihood of the QTL variance associated with the marker.
Keywords:Linkage analysis  Bayesian method  Markov chain Monte Carlo  Quantitative-trait loci
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号