首页 | 本学科首页   官方微博 | 高级检索  
     


Margins of stability in young adults with traumatic transtibial amputation walking in destabilizing environments
Authors:Eduardo J. Beltran  Jonathan B. Dingwell  Jason M. Wilken
Affiliation:1. Center for the Intrepid, Department of Orthopaedics and Rehabilitation, Brooke Army Medical Center, Ft. Sam Houston, TX 78234, USA;2. Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712, USA
Abstract:Understanding how lower-limb amputation affects walking stability, specifically in destabilizing environments, is essential for developing effective interventions to prevent falls. This study quantified mediolateral margins of stability (MOS) and MOS sub-components in young individuals with traumatic unilateral transtibial amputation (TTA) and young able-bodied individuals (AB). Thirteen AB and nine TTA completed five 3-min walking trials in a Computer Assisted Rehabilitation ENvironment (CAREN) system under each of three test conditions: no perturbations, pseudo-random mediolateral translations of the platform, and pseudo-random mediolateral translations of the visual field. Compared to the unperturbed trials, TTA exhibited increased mean MOS and MOS variability during platform and visual field perturbations (p<0.010). AB exhibited increased mean MOS during visual field perturbations and increased MOS variability during both platform and visual field perturbations (p<0.050). During platform perturbations, TTA exhibited significantly greater values than AB for mean MOS (p<0.050) and MOS variability (p<0.050); variability of the lateral distance between the center of mass (COM) and base of support at initial contact (p<0.005); mean and variability of the range of COM motion (p<0.010); and variability of COM peak velocity (p<0.050). As determined by mean MOS and MOS variability, young and otherwise healthy individuals with transtibial amputation achieved lateral stability similar to that of their able-bodied counterparts during unperturbed and visually-perturbed walking. However, based on mean and variability of MOS, unilateral transtibial amputation was shown to have affected lateral walking stability during platform perturbations.
Keywords:Walking   Transtibial amputation   Perturbations   Lateral stability   Center of mass
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号