首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A conserved inhibitory and differential stimulatory action of nucleotides on K(IR)6.0/SUR complexes is essential for excitation-metabolism coupling by K(ATP) channels.
Authors:A P Babenko  J Bryan
Institution:Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ababenko@bcm.tmc.edu
Abstract:The mechanism by which ubiquitous adenine nucleotide-gated K(IR)6.0(4)/SUR(4) channels link membrane excitability with cellular metabolism is controversial. Is a decreased sensitivity to inhibitory ATP required, or is the Mg-ADP/ATP-dependent stimulatory action of the ATPase, sulfonylurea receptor (SUR), on K(IR) sufficient to elicit a physiologically significant open channel probability? To evaluate the roles of nucleotide inhibition versus stimulation, we compared K(IR)6.1-based K(NDP) channels with K(IR)6.2-based K(ATP) channels and all possible K(IR)6.1/6.2 hybrids. Although K(NDP) channels are thought to be poorly sensitive to inhibitory ATP and to require Mg-nucleotide diphosphates for activity, we demonstrate that, like K(ATP), and hybrid channels, they are inhibited with an IC(50(ATP)) 100-fold lower than ATP](i). K(IR)6.1 is, however, more efficiently stimulated by SUR than K(IR)6.2, thus providing a mechanism for differential nucleotide regulation, in addition to the known differential interactions of Mg-nucleotides with SUR isoforms. The on-cell and spontaneous activities of K(NDP), K(ATP), and hybrid channels identified in native cells, are different; thus, their similar IC(50(ATP)) values argue the regulatory "beta" SUR subunits play a preeminent role in coupling excitation to metabolism and pose questions about the physiologic significance of models, which assume the ATP insensitivity of open K(IR)s.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号