首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microfungal variations relative to post-fire changes in soil environment
Authors:C J Lucarotti  C T Kelsey  A N D Auclair
Institution:(1) National Marine Fisheries Service, NOAA, Southeast Fisheries Center, Beaufort Laboratory, United States Department of Commerce, 28516 Beaufort, NC, USA;(2) Present address: Marine Science Institute, University of Texas at Austin, 78373 Port Aransas, TX, USA
Abstract:Summary Living and dead Zostera marina blades, plankton samples, sediments, and several animal components of an eelgrass bed near Beaufort, N.C. were collected and analyzed for 13C/12C ratios (delta 13C). The delta 13C values of producer and consumer organisms were compared in order to examine the possible origins of organic matter present in the consumers. Living and dead eelgrass blades displayed similar delta13C values,-12.2 and-10.6 per mil permil respectively, while the epiphytic community growing on the grass blades had a mean isotope ratio of-16.0permil. Animal components analyzed represented five major feeding-mode categories: invertebrates living on grass blades an presumably feeding on the epibiota (-15.1permil), deposit feeding invertebrates (-15.0permil), predatory and omnivorous invertebrates (-16.7permil), suspension and surface feeding invertebrates (-18.3permil) and omnivorous fish (-16.8permil).Organisms commonly found on the grass blades appeared to feed primarily on the epibiota growing on the blades. It is hypothesized that the epibiota derive some of their carbon from DOC released by the Zostera blade. The urchin, Lytechinus variegatus, and the brittle star, Ophioderma brevispinum, both deposit feeders, appeared to derive a major proportion of their carbon from eelgrass. With the exception of the shrimp, Alpheus heterochaelis, and the pipefish, Syngnathus floridae, the majority of other organisms analyzed appeared to be linked more directly to a plankton-carbon food chanin than to a seagrass-carbon system in this relatively young eelgrass bed.This research was supported in part through a cooperative agreement between the National Marine Fisheries Service and the U.S. Department of Energy E(49-7)-5] and in part through a National Science Foundation International Decade of Ocean Exploration grant to the University of Texas at Austin (#OCE76-01306) Contribution Number 78-12B of the Southeast Fisheries Center, Beaufort Laboratory
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号