The role of ice dynamics in shaping vegetation in flowing waters |
| |
Authors: | Lovisa Lind Christer Nilsson Lina E. Polvi Christine Weber |
| |
Affiliation: | 1. Landscape Ecology Group, Department of Ecology and Environmental Science, Ume? University, , SE‐901 87 Ume?, Sweden;2. Eawag: Swiss Federal Institute of Aquatic Science and Technology, , CH‐6047 Kastanienbaum, Switzerland |
| |
Abstract: | Ice dynamics is an important factor affecting vegetation in high‐altitude and high‐latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze‐up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow‐flowing reaches develop a surface‐ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects – mostly cell damage – happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams and rivers may mitigate some effects of anticipated climate change on ice and vegetation dynamics by, for example, slowing down flows and increasing water depth, thus reducing the potential for massive formation of underwater ice. |
| |
Keywords: | climate change ecological restoration ecosystem degradation river and stream ice vegetation |
|
|