首页 | 本学科首页   官方微博 | 高级检索  
     


Structure-Function Analysis of XcpP, a Component Involved in General Secretory Pathway-Dependent Protein Secretion in Pseudomonas aeruginosa
Authors:Sophie Bleves, Manon G  rard-Vincent, Andr  e Lazdunski,   Alain Filloux
Affiliation:Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, UPR9027, IBSM/CNRS, 13402 Marseille Cedex 20, France.
Abstract:The general secretory pathway of Pseudomonas aeruginosa is required for the transport of signal peptide-containing exoproteins across the cell envelope. After completion of the Sec-dependent translocation of exoproteins across the inner membrane and cleavage of the signal peptide, the Xcp machinery mediates translocation across the outer membrane. This machinery consists of 12 components, of which XcpQ (GspD) is the sole outer membrane protein. XcpQ forms a multimeric ring-shaped structure, with a central opening through which exoproteins could pass to reach the medium. Surprisingly, all of the other Xcp proteins are located in or are associated with the cytoplasmic membrane. This study is focused on the characteristics of one such cytoplasmic membrane protein, XcpP. An xcpP mutant demonstrated that the product of this gene is indeed an essential element of the P. aeruginosa secretion machinery. Construction and analysis of truncated forms of XcpP made it possible to define essential domains for the function of the protein. Some of these domains, such as the N-terminal transmembrane domain and a coiled-coil structure identified at the C terminus of XcpP, may be involved in protein-protein interaction during the assembly of the secretory apparatus.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号