首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proteolysis of AKAP121 regulates mitochondrial activity during cellular hypoxia and brain ischaemia
Authors:Carlucci Annalisa  Adornetto Annagrazia  Scorziello Antonella  Viggiano Davide  Foca Mariapaola  Cuomo Ornella  Annunziato Lucio  Gottesman Max  Feliciello Antonio
Institution:Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Naples, Italy.
Abstract:A-kinase anchor protein 121 (AKAP121) assembles a multivalent signalling complex on the outer mitochondrial membrane that controls persistence and amplitude of cAMP and src signalling to mitochondria, and plays an essential role in oxidative metabolism and cell survival. Here, we show that AKAP121 levels are regulated post-translationally by the ubiquitin/proteasome pathway. Seven In-Absentia Homolog 2 (Siah2), an E3-ubiquitin ligase whose expression is induced in hypoxic conditions, formed a complex and degraded AKAP121. In addition, we show that overexpression of Siah2 or oxygen and glucose deprivation (OGD) promotes Siah2-mediated ubiquitination and proteolysis of AKAP121. Upregulation of Siah2, by modulation of the cellular levels of AKAP121, significantly affects mitochondrial activity assessed as mitochondrial membrane potential and oxidative capacity. Also during cerebral ischaemia, AKAP121 is degraded in a Siah2-dependent manner. These findings reveal a novel mechanism of attenuation of cAMP/PKA signaling, which occurs at the distal sites of signal generation mediated by proteolysis of an AKAP scaffold protein. By regulating the stability of AKAP121-signalling complex at mitochondria, cells efficiently and rapidly adapt oxidative metabolism to fluctuations in oxygen availability.
Keywords:AKAP  hypoxia  mitochondria  Siah2  ubiquitin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号