首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of sex-specific feeding behavior in fiddler crabs: physiological properties of chemoreceptor neurons in claws and legs of males and females
Authors:M. J. Weissburg  C. D. Derby
Affiliation:(1) Department of Biology, Georgia state University, P.O. Box 4010, 30302-4010 Atlanta, GA, USA
Abstract:This study examined properties of chemoreceptor neurons in the claws and legs of the fiddler crabs Uca pugilator and U. pugnax. The primary goal was to establish the neural basis of previously observed greater female sensitivity to feeding stimulants, and secondarily to compare physiological properties of chemoreceptor neurons in these semi-terrestrial crustaceans with those of fully aquatic forms. Sensitivity of chemoreceptor neurons in claws and legs is sex-specific; individual neurons of females respond to lower stimulus concentrations than male chemoreceptor neurons, and equivalent concentrations elicit greater spiking in female vs male chemoreceptor neurons. Thus, the population of chemoreceptor neurons in females expresses lower thresholds and greater average sensitivity than in males. Greater sensitivity of claw neurons explains observations indicating that females continue to feed at food levels too low to stimulate males. Sensitivity differences in leg neurons of males vs females have no clear behavioral correlate, but suggest that females can orient to more dilute stimuli than males. Chemoreceptor neurons of fiddler crabs have low sensitivities and slow rates of adaptation compared to other crustaceans. Also, neurons in claws adapt less slowly than neurons in legs, which may reflect subtle differences in the chemical stimulus environment experienced by claws vs legs.
Keywords:Adaptation  Chemosensation  Crustacea  Disadaptation  Sexual dimorphism
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号