首页 | 本学科首页   官方微博 | 高级检索  
     


Defective phosphorylation and processing of beta-hexosaminidase by intact cultured fibroblasts from patients with mucolipidosis III
Authors:P G Robey  E F Neufeld
Affiliation:Genetics and Biochemistry Branch, National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20205 USA
Abstract:Previous studies of the synthesis, phosphorylation, and processing of β-hexosaminidase in cultured fibroblasts from normal individuals and from patients with mucolipidosis II (I-cell disease) (A. Hasilik and E. F. Neufeld, 1980, J. Biol. Chem.225, 4937–4946) have been extended to fibroblasts derived from patients with a related genetic disorder, mucolipidosis III (pseudo-Hurler polydystrophy). The enzyme was biosynthetically labeled in pulse-chase experiments with [3H]leucine and 33Pi, and isolated from cells and medium by immunoprecipitation. The constitutent α and β chains of the enzyme were separated by polyacrylamide gel electrophoresis under reducing and denaturing conditions, visualized by autoradiography and fluorography, extracted from the gel, and quantitated by liquid scintillation spectrometry. Enzyme produced by fibroblasts from mucolipidosis III patients had a very low but detectable phosphate content; a high proportion of newly made enzyme was secreted, though some remained within the cells and was processed to mature enzyme; the presence of NH4Cl during the labeling and chase did not significantly increase the amount of enzyme secreted. The β-hexosaminidase produced by mucolipidosis III fibroblasts thus resembled more closely that produced by fibroblasts from patients with mucolipidosis II than the normal enzyme. β-Hexosaminidase made by fibroblasts from mucolipidosis II heterozygotes was similar to the normal enzyme with respect to phosphorylation, processing, and secretion. Mucolipidosis II and III fibroblasts could endocytose normal precursor β-hexosaminidase and process it to the mature form. The deficiency of mature enzyme in the patients' cells may therefore be attributed to failure of the unphosphorylated enzyme to be incorporated into lysosomes, where processing would normally occur.
Keywords:To whom all correspondence should be addressed.
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号