首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fine Mapping of <Emphasis Type="Italic">qHD4-1</Emphasis>, a QTL Controlling the Heading Date,to a 20.7-kb DNA Fragment in Rice (<Emphasis Type="Italic">Oryza sativa</Emphasis> L.)
Authors:Binbin Wang  Changxiang Zhu  Xu Liu  Wenying Wang  Hanfeng Ding  Mingsong Jiang  Guangxian Li  Wei Liu  Fangyin Yao
Institution:(1) High-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, 250100, People’s Republic of China;(2) Shandong Rice Research Institute, Jining, Shandong, 272017, People’s Republic of China;(3) State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, 271018, People’s Republic of China;
Abstract:A library consisting of 1,123 single-segment substitution lines (SSSLs) in the same genetic background of an elite rice variety Huajingxian74 (HJX74) was evaluated for heading date. From this library, the SSSL W05-1-11-5-16-2-5 with the substituted interval of PSM103—RM348-OSR15-PSM382-RM131-RM127—RM280 was found having a gene, which stably performed extreme late heading date which performed stable and late heading in the different environments of Shandong, Guangdong, and Hainan. To map the gene governing heading date, the SSSL W05-1-11-5-16-2-5 was crossed with the recipient HJX74 to develop an F2 segregating population. The distribution of late and early heading plants in this population fitted a segregation ratio of 3:1, indicating the late heading was controlled by a dominant gene. The gene locus for heading date was tentatively designated as qHD4-1. Using a random sample of 460 individuals from the F2 segregation population, the qHD4-1 locus was mapped between two SSR markers RM3335 and RM17572, with genetic distances of 0.1 and 0.2 cM, respectively. For fine mapping of qHD4-1, a large F2:3 segregating population of 3,000 individuals were developed from F2 plants heterozygous in the RM3335-RM17572 region. Recombinants analyses further mapped qHD4-1 to an interval of 20.7-kb-bounded WB05 and the WB06. Sequence analysis of this 20.7-kb region revealed that it contains three open reading frames (ORFs), encoding wall-associated receptor kinase-like 5, putative F-box domain containing protein, and putative arogenate/prephenate dehydratase. Of them, ORF1, predicting to encode serine/threonine kinase, is considered the most likely as the candidate gene. The genetic and physical map of the qHD4-1 locus will be very useful in molecular cloning of the qHD4-1gene.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号