首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Estimating phosphorus retention of existing and restored coastal wetlands in a tributary watershed of the Laurentian Great Lakes in Michigan,USA
Authors:Wang  N  Mitsch  WJ
Institution:(1) School of Natural Resources, The Ohio State University, Columbus, OH 43210, USA
Abstract:Simulation modeling with uncertainty analysis was applied to the question of nonpoint source pollution control through extensive wetland restoration. The model was applied to the Quanicassee River basin, a tributary stream to Saginaw Bay on Lake Huron in northeastern Michigan, USA. An estimate of the role of the existing 695 ha of riverside and lake-side wetlands in the lower Quanicassee River basin suggests that they retain 1.2 metric tons of phosphorus per year (mt P/yr), or 2.5% of the total phosphorus load from the basin. A simple Vollenweider-type model of phosphorus retention by created wetlands, calibrated with 3-years of data from two wetland sites in Midwestern USA, was used to estimate the effect of major wetland restoration in the basin. For a wetland restoration project involving 15% of the Quanicassee River basin or 3,120 ha of wetlands, an estimated 33 mt P/yr could be retained, assuming a proper hydrologic connection between the wetlands and the river. This would represent a reduction of two-thirds of the existing phosphorus load to the Bay from the Quanicassee River basin. Large-scale wetland restoration appears to be a viable management practice for controlling phosphorus and other nonpoint source pollution from entering Saginaw Bay. It is an alternative that meets two major resource goals – developing wetland habitat and controlling pollution to the Great Lakes.
Keywords:coastal wetlands  Great Lakes  phosphorus retention  Saginaw Bay  uncertainty analysis  Vollenweider-type model  wetland restoration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号