首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hyperactive Cdc2 kinase interferes with the response to broken replication forks by trapping S.pombe Crb2 in its mitotic T215 phosphorylated state
Authors:Salah Adam Mahyous Saeyd  Katarzyna Ewert-Krzemieniewska  Boyin Liu  Thomas Caspari
Institution:Genome Biology Group, College of Natural Sciences, School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor LL57 2UW, Wales, United Kingdom
Abstract:Although it is well established that Cdc2 kinase phosphorylates the DNA damage checkpoint protein Crb253BP1 in mitosis, the full impact of this modification is still unclear. The Tudor-BRCT domain protein Crb2 binds to modified histones at DNA lesions to mediate the activation of Chk1 by Rad3ATR kinase. We demonstrate here that fission yeast cells harbouring a hyperactive Cdc2CDK1 mutation (cdc2.1w) are specifically sensitive to the topoisomerase 1 inhibitor camptothecin (CPT) which breaks DNA replication forks. Unlike wild-type cells, which delay only briefly in CPT medium by activating Chk1 kinase, cdc2.1w cells bypass Chk1 to enter an extended cell-cycle arrest which depends on Cds1 kinase. Intriguingly, the ability to bypass Chk1 requires the mitotic Cdc2 phosphorylation site Crb2-T215. This implies that the presence of the mitotic phosphorylation at Crb2-T215 channels Rad3 activity towards Cds1 instead of Chk1 when forks break in S phase. We also provide evidence that hyperactive Cdc2.1w locks cells in a G1-like DNA repair mode which favours non-homologous end joining over interchromosomal recombination. Taken together, our data support a model such that elevated Cdc2 activity delays the transition of Crb2 from its G1 to its G2 mode by blocking Srs2 DNA helicase and Casein Kinase 1 (Hhp1).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号