首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of cholesteryl ester synthesis by polyacetylenes from Atractylodes rhizome
Affiliation:1. School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China;2. School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China;3. College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 200715, PR China;4. School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, PR China
Abstract:Using activity guided purification, four known compounds, sesquiterpene atractylenolide III (1), and the polyacetylenes 14-acetoxy-12-senecioyloxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (2), 14-acetoxy-12-α-methylbutyl-2E,8E,10E-trien-4,6-diyn-1-ol (3), and 14-acetoxy-12-β -methylbutyl-2E,8E,10E-trien-4,6-diyn-1-ol (4), were isolated from a traditional herbal medicine, Atractylodes rhizome. Structurally similar 3 and 4 (3/4 mixture) were obtained as a mixture. In intact Chinese hamster ovary (CHO) K1 cell assays, 1, 2, and a 3/4 mixture selectively inhibited cholesterol [14C]oleate synthesis from [14C]oleate with IC50 values of 73.5 µM, 35.4 µM, and 10.2 µM, respectively, without any effects on cytotoxicity. As a potential target of these inhibitors involved in cholesteryl ester (CE) synthesis, effects on sterol O-acyltransferase (SOAT) activity were investigated using microsomes prepared from CHO-K1 cells as an enzyme source. Hence, these compounds inhibit SOAT activity with IC50 values (211 µM for 1, 29.0 µM for 2, and 11.8 µM for 3/4 mixture) that correlate well with those measured from intact cell assays. Our results strongly suggest that these compounds inhibit CE synthesis by blocking SOAT activity in CHO-K1 cells.
Keywords:Sesquiterpene  Polyacetylene  Cholesteryl ester synthesis  Inhibitor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号