首页 | 本学科首页   官方微博 | 高级检索  
     


Spontaneous Brain Activity in Type 2 Diabetics Revealed by Amplitude of Low-Frequency Fluctuations and Its Association with Diabetic Vascular Disease: A Resting-State fMRI Study
Authors:Chun-Xia Wang  Kai-Liang Fu  Huai-Jun Liu  Fei Xing  Song-Yun Zhang
Affiliation:1. Department of Medical Imaging, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.; 2. Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.; Cuban Neuroscience Center, Cuba,
Abstract:

Purpose

To investigate correlations between altered spontaneous brain activity, diabetic vascular disease, and cognitive function for patients with type 2 diabetes mellitus (T2DM) using resting-state functional magnetic resonance imaging (rs-fMRI).

Methods

Rs-fMRI was performed for T2DM patients (n = 26) and age-, gender-, and education-matched non-diabetic control subjects (n = 26). Amplitude of low frequency fluctuations (ALFF) were computed from fMRI signals to measure spontaneous neuronal activity. Differences in the ALFF patterns between patients and controls, as well as their correlations with clinical variables, were evaluated.

Results

Compared with healthy controls, T2DM patients exhibited significantly decreased ALFF values mainly in the frontal and parietal lobes, the bilateral thalumi, the posterior lobe of the cerebellum, and increased ALFF values mainly in the visual cortices. Furthermore, lower ALFF values in the left subcallosal gyrus correlated with lower ankle-brachial index values (r = 0.481, p = 0.020), while lower ALFF values in the bilateral medial prefrontal gyri correlated with higher urinary albumin-creatinine ratio (r = −0.418, p = 0.047). In addition, most of the regions with increased ALFF values in the visual cortices were found to negatively correlate with MoCA scores.

Conclusions

These results confirm that ALFF are altered in many brain regions in T2DM patients, and this is associated with the presence of diabetic vascular disease and poor cognitive performance. These findings may provide additional insight into the neurophysiological mechanisms that mediate T2DM-related cognitive dysfunction, and may also serve as a reference for future research.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号