首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sympathectomy alters bone architecture in adult growing rats
Authors:Pagani F  Sibilia V  Cavani F  Ferretti M  Bertoni L  Palumbo C  Lattuada N  De Luca E  Rubinacci A  Guidobono F
Institution:Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy. francesca.pagani@unimi.it
Abstract:Sympathetic nervous system (SNS) fibres and alpha- and beta-receptors are present in bone, indicating that the SNS may participate in bone metabolism. The importance of these observations is controversial because stimulation or inhibition of the SNS has had various effects upon both anabolic and catabolic activity in this tissue. In this study we evaluated the effects of pharmacological sympathectomy, using chronic treatment of maturing male rats with 40 mg of guanethidine/kg i.p., upon various parameters in bone. Double labelling with tetracycline injection was also performed 20 and 2 days before sacrifice. Bone mass, mineral content, density and histomorphometric characteristics in different skeletal regions were determined. Bone metabolic markers included urinary deoxypyridinoline and serum osteocalcin measurements. Guanethidine significantly reduced the accretion of lumbar vertebral bone and of mineral content and density, compared to controls. Femoral bone mineral content and density were also significantly reduced, compared to controls. Histomorphometric analyses indicated these effects were related to a reduction of cortical bone and mineral apposition rate at femoral diaphysials level. Both markers of bone metabolism were reduced in controls as they approached maturity. Guanethidine significantly decreased serum osteocalcin compared to controls, while urinary deoxypyridinoline was unchanged. These data indicate that guanethidine-induced sympathectomy caused a negative balance of bone metabolism, leading to decreased mass by regulating deposition rather than resorption during modeling and remodeling of bone.
Keywords:guanethidine  bone mineral density  DXA  bone histomorphometry  osteocalcin  deoxypyridinoline
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号