首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of stochastic and modal gating of cardiac L-type Ca2+ channels on early after-depolarizations
Authors:Tanskanen Antti J  Greenstein Joseph L  O'Rourke Brian  Winslow Raimond L
Institution:Center for Cardiovascular Bioinformatics and Modeling, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, Maryland 21218, USA. atanskan@bme.jhu.edu
Abstract:Certain signaling events that promote L-type Ca2+ channel (LCC) phosphorylation, such as beta-adrenergic stimulation or an increased expression of Ca(2+)/calmodulin-dependent protein kinase II, promote mode 2 gating of LCCs. Experimental data suggest the hypothesis that these events increase the likelihood of early after-depolarizations (EADs). We test this hypothesis using an ionic model of the canine ventricular myocyte incorporating stochastic gating of LCCs and ryanodine-sensitive calcium release channels. The model is extended to describe myocyte responses to the beta-adrenergic agonist isoproterenol. Results demonstrate that in the presence of isoproterenol the random opening of a small number of LCCs gating in mode 2 during the plateau phase of the action potential (AP) can trigger EADs. EADs occur randomly, where the likelihood of these events increases as a function of the fraction of LCCs gating in mode 2. Fluctuations of the L-type Ca2+ current during the AP plateau lead to variability in AP duration. Consequently, prolonged APs are occasionally observed and exhibit an increased likelihood of EAD formation. These results suggest a novel stochastic mechanism, whereby phosphorylation-induced changes in LCC gating properties contribute to EAD generation.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号