首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolic pathway structures for recombinant protein synthesis in Escherichia coli
Authors:Natarajan Vijayasankaran  Ross Carlson  Friedrich Srienc
Institution:(1) Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN 55455-0321, USA;(2) BioTechnology Institute, University of Minnesota, 240 Gortner Lab, 1479 Gortner Avenue, St. Paul, MN 55108, USA;(3) Present address: Center for Biofilm Engineering and Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
Abstract:Escherichia coli is a valuable commercial host for the production of heterologous proteins. We used elementary mode analysis to identify all possible genetically independent pathways for the production of three specific recombinant proteins, green fluorescent protein, savinase and an artificial protein consisting of repeating units of a five-amino-acid cassette. Analysis of these pathways led to the identification of the most efficient pathways for the production of each of these proteins. The results indicate that the amino acid composition of expressed proteins has a profound effect on the number and identity of possible pathways for the production of these proteins. We show that several groups of elementary modes produce the same ratio of biomass and recombinant protein. The pattern of occurrence of these modes is dependent on the amino acid composition of the specific foreign protein produced. These pathways are formed as systemic combinations of other pathways that produce biomass or foreign protein alone after the elimination of fluxes in specific internal reversible reactions or the reversible carbon dioxide exchange reaction. Since these modes represent pathway options that enable the cell to produce biomass and protein without utilizing these reactions, removal of these reactions would constrain the cells to utilize these modes for producing biomass and foreign protein at constant ratios.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号