首页 | 本学科首页   官方微博 | 高级检索  
     


Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis,self-assembly and drug release applications
Authors:Yuan Wang  Xue-Yin Zhang  Yan-Ling Luo  Feng Xu  Ya-Shao Chen  Yu-Yu Su
Affiliation:1.Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering,Shaanxi Normal University,Xi’an,People’s Republic of China
Abstract:

Background

Stimuli-responsive polymer materials are a new kind of intelligent materials based on the concept of bionics, which exhibits more significant changes in physicochemical properties upon triggered by tiny environment stimuli, hence providing a good carrier platform for antitumor drug delivery.

Results

Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) block copolymers (Fe3O4-g-PAA-b-PMAEFC) were engineered and synthesized through a two-step sequential reversible addition-fragmentation chain transfer polymerization route. The characterization was performed by FTIR, 1H NMR, SEC, XRD and TGA techniques. The self-assembly behavior in aqueous solution upon triggered by pH, magnetic and redox stimuli was investigated via zeta potentials, vibration sample magnetometer, cyclic voltammetry, fluorescent spectrometry, dynamic light scattering, XPS, TEM and SEM measurements. The experimental results indicated that the Fe3O4-g-PAA-b-PMAEFC copolymer materials could spontaneously assemble into hybrid magnetic copolymer micromicelles with core–shell structure, and exhibited superparamagnetism, redox and pH stimuli-responsive features. The hybrid copolymer micromicelles were stable and nontoxic, and could entrap hydrophobic anticancer drug, which was in turn swiftly and effectively delivered from the drug-loaded micromicelles at special microenvironments such as acidic pH and high reactive oxygen species.

Conclusion

This class of stimuli-responsive copolymer materials is expected to find wide applications in medical science and biology, etc., especially in drug delivery system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号