首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Design of orthogonal genetic switches based on a crosstalk map of σs,anti‐σs,and promoters
Authors:Brian D Sharon  Amar Ghodasara  Ekaterina Orlova  Hannah Tabakh  David H Burkhardt  Kevin Clancy  Todd C Peterson  Carol A Gross  Christopher A Voigt
Institution:1. Graduate Group in Biophysics, University of California San Francisco, , San Francisco, CA, USA;2. Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, , Cambridge, MA, USA;3. Department of Microbiology and Immunology, University of California San Francisco, , San Francisco, CA, USA;4. Synthetic Biology Research and Development, Life Technologies, , Carlsbad, CA, USA;5. Department of Cell and Tissue Biology, University of California San Francisco, , San Francisco, CA, USA
Abstract:Cells react to their environment through gene regulatory networks. Network integrity requires minimization of undesired crosstalk between their biomolecules. Similar constraints also limit the use of regulators when building synthetic circuits for engineering applications. Here, we mapped the promoter specificities of extracytoplasmic function (ECF) σ s as well as the specificity of their interaction with anti‐ σ s. DNA synthesis was used to build 86 ECF σ s (two from every subgroup), their promoters, and 62 anti‐ σ s identified from the genomes of diverse bacteria. A subset of 20 σ s and promoters were found to be highly orthogonal to each other. This set can be increased by combining the ?35 and ?10 binding domains from different subgroups to build chimeras that target sequences unrepresented in any subgroup. The orthogonal σ s, anti‐ σ s, and promoters were used to build synthetic genetic switches in Escherichia coli. This represents a genome‐scale resource of the properties of ECF σ s and a resource for synthetic biology, where this set of well‐characterized regulatory parts will enable the construction of sophisticated gene expression programs.
Keywords:compiler  genetic circuit  part mining  synthetic biology  systems biology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号