首页 | 本学科首页   官方微博 | 高级检索  
     


Circular RNA expression profiles during the differentiation of mouse neural stem cells
Authors:Qichang Yang  Jing Wu  Jian Zhao  Tianyi Xu  Zhongming Zhao  Xiaofeng Song  Ping Han
Affiliation:1.Department of Biomedical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,China;2.Center for Precision Health, School of Biomedical Informatics,The University of Texas Health Science Center at Houston,Houston,USA;3.Department of Biomedical Informatics,Vanderbilt University Medical Center,Nashville,USA;4.The First Affiliated Hospital with Nanjing Medical University,Nanjing,China
Abstract:

Background

Circular RNAs (circRNAs) have recently been found to be expressed in human brain tissue, and many lines ofevidence indicate that circRNAs play regulatory roles in neurodevelopment. Proliferation and differentiation of neural stem cells (NSCs) are critical parts during development of central nervous system (CNS).To date, there have been no reports ofcircRNA expression profiles during the differentiation of mouse NSCs. We hypothesizethat circRNAs mayregulate gene expression in the proliferation anddifferentiation of NSCs.

Results

In this study, we obtained NSCs from the wild-type C57BL/6 J mouse fetal cerebral cortex. We extracted total RNA from NSCs in different differentiation stagesand then performed RNA-seq. By analyzing the RNA-Seq data, we found 37circRNAs and 4182 mRNAs differentially expressedduringthe NSC differentiation. Gene Ontology (GO) enrichment analysis of thecognate linear genes of these circRNAsrevealed that some enriched GO terms were related to neural activity. Furthermore, we performed a co-expression network analysis of these differentially expressed circRNAs and mRNAs. The result suggested a stronger GO enrichmentin neural features for both the cognate linear genes of circRNAs and differentially expressed mRNAs.

Conclusion

We performed the first circRNA investigation during the differentiation of mouse NSCs. Wefound that12 circRNAs might have regulatory roles duringthe NSC differentiation, indicating that circRNAs might be modulated during NSC differentiation.Our network analysis suggested the possible complex circRNA-mRNA mechanisms during differentiation, and future experimental workis need to validate these possible mechanisms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号