首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Integrating life history traits into predictive phylogeography
Authors:Jack Sullivan  Megan L Smith  Anahí Espíndola  Megan Ruffley  Andrew Rankin  David Tank  Bryan Carstens
Abstract:Predictive phylogeography seeks to aggregate genetic, environmental and taxonomic data from multiple species in order to make predictions about unsampled taxa using machine‐learning techniques such as Random Forests. To date, organismal trait data have infrequently been incorporated into predictive frameworks due to difficulties inherent to the scoring of trait data across a taxonomically broad set of taxa. We refine predictive frameworks from two North American systems, the inland temperate rainforests of the Pacific Northwest and the Southwestern Arid Lands (SWAL), by incorporating a number of organismal trait variables. Our results indicate that incorporating life history traits as predictor variables improves the performance of the supervised machine‐learning approach to predictive phylogeography, especially for the SWAL system, in which predictions made from only taxonomic and climate variables meets only moderate success. In particular, traits related to reproduction (e.g., reproductive mode; clutch size) and trophic level appear to be particularly informative to the predictive framework. Predictive frameworks offer an important mechanism for integration of organismal trait, environmental data, and genetic data in phylogeographic studies.
Keywords:comparative phylogeography  cryptic diversity  machine learning  random forest
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号