首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An investigation into the effects of increasing salinity on photosynthesis in freshwater unicellular cyanobacteria during the late Archaean
Authors:Achim J Herrmann  Michelle M Gehringer
Abstract:The oldest species of bacteria capable of oxygenic photosynthesis today are the freshwater Cyanobacteria Gloeobacter spp., belonging to the class Oxyphotobacteria. Several modern molecular evolutionary studies support the freshwater origin of cyanobacteria during the Archaean and their subsequent acquisition of salt tolerance mechanisms necessary for their expansion into the marine environment. This study investigated the effect of a sudden washout event from a freshwater location into either a brackish or marine environment on the photosynthetic efficiency of two unicellular freshwater cyanobacteria: the salt‐tolerant Chroococcidiopsis thermalis PCC7203 and the cyanobacterial phylogenetic root species, Gloeobacter violaceus PCC7421. Strains were cultured under present atmospheric levels (PAL) of CO2 or an atmosphere containing elevated levels of CO2 and reduced O2 (eCO2rO2) in simulated shallow water or terrestrial environmental conditions. Both strains exhibited a reduction in growth rates and gross photosynthesis, accompanied by significant reductions in chlorophyll a content, in brackish water, with only C. thermalis able to grow at marine salinity levels. While the experimental atmosphere caused a significant increase in gross photosynthesis rates in both strains, it did not increase their growth rates, nor the amount of O2 released. The differences in growth responses to increasing salinities could be attributed to genetic differences, with C. thermalis carrying additional genes for trehalose synthesis. This study demonstrates that, if cyanobacteria did evolve in a freshwater environment, they would have been capable of withstanding a sudden washout into increasingly saline environments. Both C. thermalis and G. violaceus continued to grow and photosynthesise, albeit at diminished rates, in brackish water, thereby providing a route for the evolution of open ocean‐dwelling strains, necessary for the oxygenation of the Earth's atmosphere.
Keywords:Archaean     Chroococcidiopsis thermalis     cyanobacteria     Gloeobacter violaceus     photosynthesis  pigments  salinity tolerance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号