首页 | 本学科首页   官方微博 | 高级检索  
     


Low‐intensity pulsed ultrasound attenuates cardiac inflammation of CVB3‐induced viral myocarditis via regulation of caveolin‐1 and MAPK pathways
Authors:Cheng Zheng  Sen‐Min Wu  Hao Lian  Yuan‐Zheng Lin  Rong Zhuang  Saroj Thapa  Quan‐Zhi Chen  Yi‐Fan Chen  Jia‐Feng Lin
Abstract:The aggressive immunological activity elicited by acute viral myocarditis contributes to a large amount of cardiomyocytes loss and poor prognosis of patients in clinic. Low‐intensity pulsed ultrasound (LIPUS), which is an effective treatment modality for osteoarthropathy, has been recently illustrated regulating the overactive inflammatory response in various diseases. Here, we aimed to investigate whether LIPUS could attenuate coxsackievirus B3 (CVB3) infection‐induced injury by coordinating the inflammatory response. Male BALB/c mice were inoculated intraperitoneally with CVB3 to establish the model of acute viral myocarditis. LIPUS treatment was given on Day 1, Day 1, 3 and Day 1, 3, 5 post‐inoculation, respectively. All mice were followed up for 14 days. Day 1, 3, 5 LIPUS treatment significantly improved the survival rate, attenuated the ventricular dysfunction and ameliorated the cardiac histopathological injury of CVB3‐infected mice. Western blotting analysis showed Day 1, 3, 5 LIPUS treatment decreased pro‐inflammatory cytokines, increased the activation of caveolin‐1 and suppressed p38 mitogen‐activated protein kinase (MAPK) and extracellular signal‐regulated kinase (ERK) signallings in heart tissue. RAW264.7 cells were treated with lipopolysaccharides (LPS) to simulate the augmented inflammatory response in vivo. LIPUS treatment on RAW264.7 inhibited the expression of pro‐inflammatory cytokines, activated caveolin‐1 and suppressed p38 MAPK and ERK signallings. Transfecting RAW264.7 with caveolin‐1 siRNA blunted the suppression of pro‐inflammatory cytokines and MAPK signallings by LIPUS treatment. Taken together, we demonstrated for the first time that LIPUS treatment attenuated the aggressive inflammatory response during acute viral myocarditis. The underlying mechanism may be activating caveolin‐1 and suppressing MAPK signallings.
Keywords:augmented inflammatory response  caveolin‐1  ERK  low‐intensity pulsed ultrasound  p38 MAPK  viral myocarditis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号