Time series are critical to understand microbial plankton diversity and ecology |
| |
Authors: | David Moreira,Purificaci n L pez‐Garcí a |
| |
Affiliation: | David Moreira,Purificación López‐García |
| |
Abstract: | How diverse are marine planktonic protist communities? How much seasonality do they exhibit? For a very long time, these two old and challenging questions in the field of plankton ecology could be addressed only for large‐size protist species, based on cell counting under the microscope. The recent application of molecular techniques, notably massive marker‐gene amplicon sequencing approaches (metabarcoding), has allowed investigating with unprecedented level of resolution the small‐sized (<20 µm) planktonic eukaryotes too. An amazing diversity of these tiny organisms has been unveiled but details about their temporal dynamics remain much more elusive. In a From the Cover article in this issue of Molecular Ecology, Giner et al. (2019) introduce a new Recurrence Index (RI) to specifically look for seasonality in time‐series metabarcoding data. They inspected the temporal dynamics of all operational taxonomic units (OTUs) in a rich sequence data set of pico‐ and nanoplanktonic eukaryotes in samples collected monthly during 10 years. Although most OTUs did not show seasonality, some abundant ones did, which explains why some averaging methods can find seasonality at the less detailed level of whole planktonic communities. Not surprisingly, the very complex small‐sized eukaryotic plankton communities are composed of organisms with miscellaneous temporal dynamics. |
| |
Keywords: | |
|
|