首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of microRNA‐155 in modifying neuroinflammation and γ‐aminobutyric acid transporters in specific central regions after post‐ischaemic seizures
Authors:Wenwen Zhang  Luping Wang  Xiaochuan Pang  Jian Zhang  Yi Guan
Abstract:In the central nervous system, interleukin (IL)‐1β, IL‐6 and tumour necrosis factor (TNF)‐α have a regulatory role in pathophysiological processes of epilepsy. In addition, γ‐aminobutyric acid (GABA) transporter type 1 and type 3 (GAT‐1 and GAT‐3) modulate the levels of extracellular GABA in involvement in the neuroinflammation on epileptogenesis. Thus, in the current report we examined the effects of inhibiting microRNA‐155 (miR‐155) on the levels of IL‐1β, IL‐6 and TNF‐α, and expression of GAT‐1 and GAT‐3 in the parietal cortex, hippocampus and amygdala of rats with nonconvulsive seizure (NCS) following cerebral ischaemia. Real time RT‐PCR, ELISA and Western blot analysis were used to examine the miR‐155, proinflammatory cytokines (PICs) and GAT‐1/GAT‐3 respectively. With induction of NCS, the levels of miR‐155 were amplified in the parietal cortex, hippocampus and amygdala and this was accompanied with increases of IL‐1β, IL‐6 and TNF‐α. In those central areas, expression of GAT‐1 and GAT‐3 was upregulated; and GABA was reduced in rats following NCS. Intracerebroventricular infusion of miR‐155 inhibitor attenuated the elevation of PICs, amplification of GAT‐1 and GAT‐3 and impairment of GABA. Furthermore, inhibition of miR‐155 decreased the number of NCS events following cerebral ischaemia. Inhibition of miR‐155 further improved post‐ischaemia‐evoked NCS by altering neuroinflammation‐GABA signal pathways in the parietal cortex, hippocampus and amygdala. Results suggest the role of miR‐155 in regulating post‐ischaemic seizures via PICs‐GABA mechanisms.
Keywords:cerebral ischaemia  GABA  miRNA‐155  neuroinflammation  seizure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号