首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of properties of Ca2+ release channels between rabbit and frog skeletal muscles
Authors:Yasuo Ogawa  Takashi Murayama  Nagomi Kurebayashi
Institution:(1) Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
Abstract:Biochemical investigation of Ca2+ release channel proteins has been carried out mainly with rabbit skeletal muscles, while frog skeletal muscles have been preferentially used for physiological investigation of Ca2+ release. In this review, we compared the properties of ryanodine receptors (RyR), Ca2+ release channel protein, in skeletal muscles between rabbit and frog. While the Ryr1 isoform is the main RyR of rabbit skeletal muscles, two isoforms, agr- and beta-RyR which are homologous to Ryr1 and Ryr3 isoforms in mammals, respectively, coexist as a homotetramer in a similar amount in frog skeletal muscles. The two isoforms in an isotonic medium show very similar property in 3H]ryanodine binding activity which is parallel to Ca2+-induced Ca2+ release (CICR) activity, and make independent contributions to the activities of the sarcoplasmic reticulum. CICR and 3H]ryanodine binding activities of rabbit and frog are qualitatively similar in stimulation by Ca2+, adenine nucleotide and caffeine, however, they showed the following quantitative differences. First, rabbit RyR showed higher Ca2+ affinity than the frog. Second, rabbit RyR showed higher activity in the presence of Ca2+ alone with less stimulation by adenine nucleotide than the frog. Third, rabbit RyR displayed less enhancement of 3H]ryanodine binding by caffeine in spite of having a similar magnitude of Ca2+ sensitization than the frog, which may explain the occasional difficulty by researchers to demonstrate caffeine contracture with mammalian skeletal muscles. Finally, but not least, rabbit RyR still showed marked inhibition of 3H]ryanodine binding in the presence of high Ca2+ concentrations in the 1 M NaCl medium, while frog RyR showed disinhibition. Other matters relevant to Ca2+ release were also discussed.
Keywords:Ca2+ release  frog  rabbit  ryanodine receptor  skeletal muscle
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号