首页 | 本学科首页   官方微博 | 高级检索  
     


Simple carbon assimilation response functions from atmospheric CO2, and daily temperature and shortwave radiation
Authors:D.S. WILKS  D.W. WOLFE  S.J. RIHA
Affiliation:Department of Soil, Crop and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA;Department of Fruit and Vegetable Sciences, Cornell University, Ithaca NY 14853, USA
Abstract:A global ‘CO2 fertilizer effect’ multiplier is often used in crop or ecosystem models because of its simplicity. However, this approach does not take into account the interaction between CO2, temperature and light on assimilation. This omission can lead to significant under- or overestimation of the magnitude of beneficial effects from elevated CO2, depending on environmental conditions. We use a mechanistic model of the biochemistry of photosynthesis to represent the response of net assimilation to different levels of CO2, temperature and radiation, on the daily time scale. Instantaneous assimilation rates for an idealized canopy model are integrated through diurnal cycles of environmental variables derived from historical climate data at three locations in North America. The calculated CO2 fertilizer effect is greatest at high light and warm temperatures. The results are summarized by assimilation response surfaces specified by the CO2 concentration, the canopy leaf area index, and by daily values of temperature and radiation available from climatic records. These summary functions are suitable for incorporation into crop or ecosystem models for predicting carbon assimilation or biomass production on a daily time step. An example application of the function reveals that for a relatively cool, high latitude location, the beneficial effects from a CO2 doubling would be negligible during the early spring, even assuming a + 4°C global warming scenario. In contrast, the beneficial effects from increasing CO2 at a relatively warm, lower latitude location are greatest in the spring, but decline in late summer because of excessively warm temperatures with a + 4°C global warming.
Keywords:carbon dioxide    climate change    global warming    light    photosynthesis model    temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号