首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increasing rate of cleavage at boundary between non-structural proteins 4B and 5A inhibits replication of hepatitis C virus
Authors:Herod Morgan R  Jones Daniel M  McLauchlan John  McCormick Christopher J
Institution:Sir Henry Wellcome Laboratories, Division of Infection, Inflammation and Immunity, School of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.
Abstract:In hepatitis C virus, non-structural proteins are cleaved from the viral polyprotein by viral encoded proteases. Although proteolytic processing goes to completion, the rate of cleavage differs between different boundaries, primarily due to the sequence at these positions. However, it is not known whether slow cleavage is important for viral replication or a consequence of restrictions on sequences that can be tolerated at the cleaved ends of non-structural proteins. To address this question, mutations were introduced into the NS4B side of the NS4B5A boundary, and their effect on replication and polyprotein processing was examined in the context of a subgenomic replicon. Single mutations that modestly increased the rate of boundary processing were phenotypically silent, but a double mutation, which further increased the rate of boundary cleavage, was lethal. Rescue experiments relying on viral RNA polymerase-induced error failed to identify second site compensatory mutations. Use of a replicon library with codon degeneracy did allow identification of second site compensatory mutations, some of which fell exclusively within the NS5A side of the boundary. These mutations slowed boundary cleavage and only enhanced replication in the context of the original lethal NS4B double mutation. Overall, the data indicate that slow cleavage of the NS4B5A boundary is important and identify a previously unrecognized role for NS4B5A-containing precursors requiring them to exist for a minimum finite period of time.
Keywords:Hepatitis C Virus  Viral Genetics  Viral Protease  Viral Protein  Viral Replication
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号