首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thoughts on thiolate tethering. Tribute and thanks to a teacher
Authors:Ullrich V
Institution:Department of Biology, University of Konstanz, Germany. volker.ullrich@uni-konstanz.de
Abstract:A unique feature of P450 enzymes is in the presence of a thiolate ligand heme but its exact function in catalysis is a matter of debate. For P450 dependent monooxygenases the "active oxygen" complex seems to exist only as a transition state in which the thiolate ligand provides electron density in order to prevent pi-backbonding of the oxygen to the iron (-S-Fe-O(z.rad;)). The corresponding ground state (Compound I) would be a ferryl species (Fe(IV)z.dbnd6;O) with an electron hole either at the porphyrin or at the sulfur. Apart from this role we postulate that a second function is related to the electronic structure of Compound II as an electron acceptor and this property is shared among monooxygenases, thromboxane synthase, prostacyclin synthase, allene oxide synthase, P450(NOR(-)) and chloroperoxidase. As a common step in all P450 enzymes an extremely rapid electron uptake by Compound II allows that the primary substrate radicals are oxidized to cations which immediately combine with a neighbouring nucleophile. Thus "electron transfer" may substitute for "oxygen rebound" as the final step leading to product formation. The same principle also applies methane monooxygenases in which the role of the thiyl sulfur is replaced by a ferryl-oxyl entity.
Keywords:Thiolate ligand  Heme thiolate proteins  Active oxygen complex  Monooxygenase mechanisms  Cytochrome P450  Methane monooxygenase  Intermediates  Transition states
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号