首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I
Authors:Van Lenten Brian J  Wagner Alan C  Jung Chun-Ling  Ruchala Piotr  Waring Alan J  Lehrer Robert I  Watson Andrew D  Hama Susan  Navab Mohamad  Anantharamaiah G M  Fogelman Alan M
Institution:*Department of Medicine David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1679;The Atherosclerosis Research Unit, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
Abstract:4F is an anti-inflammatory, apolipoprotein A-I (apoA-I)-mimetic peptide that is active in vivo at nanomolar concentrations in the presence of a large molar excess of apoA-I. Physiologic concentrations ( approximately 35 microM) of human apoA-I did not inhibit the production of LDL-induced monocyte chemotactic activity by human aortic endothelial cell cultures, but adding nanomolar concentrations of 4F in the presence of approximately 35 microM apoA-I significantly reduced this inflammatory response. We analyzed lipid binding by surface plasmon resonance. The anti-inflammatory 4F peptide bound oxidized lipids with much higher affinity than did apoA-I. Initially, we examined the binding of PAPC (1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine) and observed that its oxidized products bound 4F with an affinity that was approximately 4-6 orders of magnitude higher than that of apoA-I. This high binding affinity was confirmed in studies with defined lipids and phospholipids. 3F-2 and 3F(14) are also amphipathic alpha-helical octadecapeptides, but 3F-2 inhibits atherosclerosis in mice and 3F(14) does not. Like 4F, 3F-2 also bound oxidized phospholipids with very high affinity, whereas 3F(14) resembled apoA-I. The extraordinary ability of 4F to bind pro-inflammatory oxidized lipids probably accounts for its remarkable anti-inflammatory properties.
Keywords:atherosclerosis  apolipoprotein A-I  lipoproteins  oxidized phospholipids
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号