首页 | 本学科首页   官方微博 | 高级检索  
     


Role of calcineurin and protein phosphatase-2A in the regulation of DARPP-32 dephosphorylation in neostriatal neurons
Authors:Nishi A  Snyder G L  Nairn A C  Greengard P
Affiliation:Department of Physiology, Kurume University School of Medicine, Fukuoka, Japan.
Abstract:DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cyclic AMP-dependent protein kinase, resulting in its conversion to a potent inhibitor of protein phosphatase-1 (PP-1). Conversely, Thr34-phosphorylated DARPP-32 is dephosphorylated and inactivated in vitro by calcineurin and protein phosphatase-2A (PP-2A). We have investigated the relative contributions of these protein phosphatases to the regulation of DARPP-32 dephosphorylation in mouse neostriatal slices. Cyclosporin A (5 microM), a calcineurin inhibitor, maximally increased the level of phosphorylated DARPP-32 by 17+/-2-fold. Okadaic acid (1 microM), an inhibitor of PP-1 and PP-2A, had a smaller effect, increasing phospho-DARPP-32 by 5.1+/-1.3-fold. The effect of okadaic acid on DARPP-32 phosphorylation was shown to be due to inhibition of PP-2A activity. Incubation of slices in the presence of cyclosporin A plus either okadaic acid or calyculin A, another PP-1/PP-2A inhibitor, caused a synergistic increase in the level of phosphorylated DARPP-32. The use of Ca2(+)-free/EGTA medium mimicked the effects of cyclosporin A on DARPP-32 phosphorylation, supporting the conclusion that the action of cyclosporin on DARPP-32 phosphorylation was attributable to blockade of the Ca2(+)-dependent activation of calcineurin. The results indicate that calcineurin and PP-2A, but not PP-1, act synergistically to maintain a low level of phosphorylated DARPP-32 in neostriatal slices.
Keywords:Cyclic AMP-dependent protein kinase    Cyclosporin A    Dopamine    Okadaic acid    Protein phosphatase-1
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号