首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ionizing radiation activates nuclear protein phosphatase-1 by ATM-dependent dephosphorylation
Authors:Guo Chang Y  Brautigan David L  Larner James M
Institution:Department of Radiation Oncology, University of Virginia Health System, Charlottesville 22908, USA.
Abstract:Ionizing radiation (IR) is known to activate multiple signaling pathways, resulting in diverse stress responses including apoptosis, cell cycle arrest, and gene induction. IR-activated cell cycle checkpoints are regulated by Ser/Thr phosphorylation, so we tested to see if protein phosphatases were targets of an IR-activated damage-sensing pathway. Jurkat cells were subjected to IR or sham radiation followed by brief (32)P metabolic labeling. Nuclear extracts were subjected to microcystin affinity chromatography to recover phosphatases, and the proteins were analyzed by two-dimensional gel electrophoresis. Protein sequencing revealed that the microcystin-bound proteins with the greatest reduction in (32)P intensity following IR were the alpha and delta isoforms of protein phosphatase 1 (PP1). Both of these PP1 isoforms contain an Arg-Pro-Ile/Val-Thr-Pro-Pro-Arg sequence near the C terminus, a known site of phosphorylation by Cdc/Cdk kinases, and phosphorylation attenuates phosphatase activity. In wild-type Jurkat cells or ataxia telangiectasia (AT) cells that are stably transfected with full-length ATM kinase, IR resulted in net dephosphorylation of this site in PP1 and produced activation of PP1. However, in AT cells that are deficient in ATM, IR failed to induce dephosphorylation or activation of PP1. IR-induced PP1 activation in the nucleus may be a critical component in an ATM-mediated pathway controlling checkpoint activation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号