首页 | 本学科首页   官方微博 | 高级检索  
     


Furosemide enhances the sensitivity of urinary metabolomics for assessment of kidney function
Authors:Isaie Sibomana  Nicholas J. DelRaso  David Mattie  Michael L. Raymer  Nicholas V. Reo
Affiliation:1.Department of Biochemistry and Molecular Biology, Magnetic Resonance Laboratory, Boonshoft School of Medicine, 162 Diggs Laboratory,Wright State University,Dayton,USA;2.Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate,Wright-Patterson Air Force Base,Dayton,USA;3.Department of Computer Science and Engineering,Wright State University,Dayton,USA
Abstract:

Introduction

The ability of urinary metabolomics to detect meaningful, tissue-specific, biological effects (i.e., toxicity, disease) is compounded by high background variability. We hypothesize that sensitivity can be enhanced by imposing a tissue-targeted metabolic stressor.

Objective

We tested whether the sensitivity of metabolomics to assess kidney function is improved under the diuretic stress of furosemide.

Methods

To mildly compromise kidney, rats were given a sub-acute dose of d-serine. Then at 24 h postdose, we administered vehicle solution (control) or the diuretic drug, furosemide, and conducted NMR-based urinary metabolomics.

Results

Principal Components and OPLS discriminant analyses showed no effects on urinary profiles in rats receiving d-serine alone. However, the effects of d-serine were observable under furosemide-induced stress, as urinary profiles classified separately from rats receiving furosemide alone or vehicle-treated controls (p?d-serine?+?furosemide. We identified 24 metabolites to classify the effects of furosemide in normal rats vs. d-serine-compromised rats. Most notably, a furosemide-induced increase in urinary excretion of α-ketoglutarate, creatinine, trigonelline, and tryptophan in control rats, was significantly reduced in d-serine exposed rats (p?

Conclusions

We attribute these effects to differences in kidney function, which were only detectable under the stress imposed by furosemide. This technique may extend to other organ systems and may provide improved sensitivity for assessment of tissue function or early detection of disease.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号