首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The association of fecal microbiota and fecal,blood serum and urine metabolites in myalgic encephalomyelitis/chronic fatigue syndrome
Authors:Christopher W Armstrong  Neil R McGregor  Donald P Lewis  Henry L Butt  Paul R Gooley
Institution:1.Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute,University of Melbourne,Parkville,Australia;2.Faculty of Medicine, Dentistry and Health Sciences,University of Melbourne,Parkville,Australia;3.CFS Discovery, Donvale Medical Centre,Donvale,Australia;4.Bioscreen (Aust) Pty Ltd,Yarraville,Australia
Abstract:

Introduction

The human gut microbiota has the ability to modulate host metabolism. Metabolic profiling of the microbiota and the host biofluids may determine associations significant of a host–microbe relationship. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a long-term disorder of fatigue that is poorly understood, but has been linked to gut problems and altered microbiota.

Objectives

Find changes in fecal microbiota and metabolites in ME/CFS and determine their association with blood serum and urine metabolites.

Methods

A workflow was developed that correlates microbial counts with fecal, blood serum and urine metabolites quantitated by high-throughput 1H NMR spectroscopy. The study consists of thirty-four females with ME/CFS (34.9?±?1.8 SE years old) and twenty-five non-ME/CFS female (33.0?±?1.6 SE years old).

Results

The workflow was validated using the non-ME/CFS cohort where fecal short chain fatty acids (SCFA) were associated with serum and urine metabolites indicative of host metabolism changes enacted by SCFA. In the ME/CFS cohort a decrease in fecal lactate and an increase in fecal butyrate, isovalerate and valerate were observed along with an increase in Clostridium spp. and a decrease in Bacteroides spp. These differences were consistent with an increase in microbial fermentation of fiber and amino acids to produce SCFA in the gut of ME/CFS patients. Decreased fecal amino acids positively correlated with substrates of gluconeogenesis and purine synthesis in the serum of ME/CFS patients.

Conclusion

Increased production of SCFA by microbial fermentation in the gut of ME/CFS patients may be associated with deleterious effects on the host energy metabolism.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号