Distribution patterns of marine planktonic cyanobacterial assemblages in transitional marine habitats using 16S rRNA phylogeny |
| |
Authors: | Tarkeshwar Singh Punyasloke Bhadury |
| |
Affiliation: | Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISERK), Mohanpur, Nadia, West Bengal, India |
| |
Abstract: | The community composition of marine planktonic cyanobacteria in transitional marine habitats can influence its overall contribution to aquatic primary production. To understand distribution patterns of marine planktonic cyanobacterial assemblages, phylogenetic and statistical analyses were undertaken on planktonic cyanobacterial 16S rRNA gene sequences from four transitional marine habitats [Baltic Sea (BL), Monterey Bay (MB), South China Sea (SCS) and Sundarbans (SB)]. Out of 3255 sequences analyzed, only 546 sequences were found to be planktonic cyanobacteria and were considered in this study. Among these, 338 sequences representative of Sundarbans, the world's largest mangrove were generated based on Sanger and Illumina sequencing approaches. Based on 16S rRNA phylogeny, four major taxonomic orders of marine planktonic cyanobacteria were recovered in varying proportions with several novel 16S rRNA sequences in each of the four targeted sites. Members of the order Synechococcales were dominant in all the sites (?94% sequences) while the orders Chroococcales and Oscillatoriales were only detected in SB and SCS sites, respectively. In the phylogenetic tree, sequences representing the major marine picocyanobacterial genus Synechococcus showed overwhelming dominance in SB and they were found in three other sites. Prochlorococcus ‐like sequences were found in sizeable number in MB and SCS but were absent in SB and coastal BL. Synechococcus ‐like sequences were represented by three major marine clusters (5.1, 5.2, and 5.3). Three novel clades as part of Synechococcus cluster were detected only in SB and one novel clade in BL. The majority of OTUs were found to be exclusive to each site, whereas some were shared by two or more sites as revealed by beta‐diversity analysis. |
| |
Keywords: | dominance mangrove novel clades Synechococcales taxonomic orders |
|
|