The NK cell MHC class I receptor Ly49A detects mutations on H-2Dd inside and outside of the peptide binding groove |
| |
Authors: | Matsumoto N Yokoyama W M Kojima S Yamamoto K |
| |
Affiliation: | Laboratory of Molecular Medicine, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan. nmatsu@k.u-tokyo.ac.jp |
| |
Abstract: | The NK cell inhibitory receptor Ly49A recognizes the mouse MHC class I molecule H-2D(d) and participates in the recognition of missing self. Previous studies indicated that the determinant recognized by Ly49A exists in alpha1/alpha2 domain of H-2D(d). Here we have substituted polymorphic as well as conserved residues of H-2D(d) alpha1/alpha2 domain (when compared with H-2K(d), which does not interact with Ly49A). We then tested the ability of the H-2D(d) mutants to interact with Ly49A by soluble Ly49A tetramer binding and NK cell cytotoxicity inhibition assays. Individual introduction of mutations converting the H-2D(d) residue into the corresponding H-2K(d) residue (N30D, D77S, or A99F) in H-2D(d) partially abrogated the interaction between Ly49A and H-2D(d). Introduction of the three mutations into H-2D(d) completely abolished Ly49A recognition. Individual introduction of D29N or R35A mutation into the residues of H-2D(d) that are conserved among murine MHC class I severely impaired the interaction. The crystal structure of H-2D(d) reveals that D77 and A99 are located in the peptide binding groove and that N30, D29, and R35 are in the interface of the three structural domains of MHC class I: alpha1/alpha2, alpha3, and beta(2)-microglobulin. These data suggest that Ly49A can monitor mutations in MHC class I inside and outside of the peptide binding groove and imply that inhibitory MHC class I-specific receptors are sensitive to mutations in MHC class I as well as global loss of MHC class I. Our results also provide insight into the molecular basis of Ly49A to distinguish MHC class I polymorphism. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|