首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium binding proteins: optical stopped-flow and proton nuclear magnetic resonance studies of the binding of the lanthanide series of metal ions to parvalbumin
Authors:D C Corson  T C Williams  B D Sykes
Abstract:Optical stopped-flow techniques have been used to determine the dissociation rate constants (koff) for the lanthanide(III) ions from carp (pI 4.25) parvalbumin. For most of the 13 different lanthanides studied, the release kinetics were diphasic, composed of both a fast phase (whose rate varied across the series, La3+ leads to Lu3+, between the limits -1.2 less than or equal to log kFAST less than or equal to -0.7) and a slower phase (whose rate varied across the series, La3+ leads to Lu3+, between the limits -1.2 greater than or equal to log kSLOW greater than or equal to -2.9). In addition, the La3+- and Lu3+-induced changes in the 270-MHz proton nuclear magnetic resonance spectrum of parvalbumin were used to calculate the dissociation constants for these specific lanthanides from the two high-affinity Ca2+ binding sites. The KD for one site appears to remain constant across the lanthanide series, determined to be 4.8 X 10(-11) M for both La3+ and Lu3+. The other site, however, is evidently quite sensitive to the nature of the bound Ln3+ ion and shows a strong preference for La3+ (KD,La = 2.0 X 10(-11) M; KD,Lu = 3.6 X 10(-10) M). We conclude from these observations that reports of nearly indistinguishable CD/EF binding site affinities for parvalbumin complexes of the middle-weight lanthanides (i.e., Eu3+, Gd3+, and Tb3+) are quite reasonable in view of the crossover in relative CD/EF site affinities across the lanthanide series.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号