首页 | 本学科首页   官方微博 | 高级检索  
     


Mild stress during development affects the phenotype of great tit Parus major nestlings: a challenge experiment
Authors:WILLEM TALLOEN  LUC LENS  STEFAN VAN DONGEN  FRANK ADRIAENSEN  ERIK MATTHYSEN
Affiliation:1. Evolutionary Ecology Group, Department of Biology, Groenenborgerlaan 171, University of Antwerp, B‐2020 Antwerpen, Belgium;2. Terrestrial Ecology Unit, Department of Biology, Ledeganckstraat 35, Ghent University, B‐9000 Ghent, Belgium
Abstract:Conditions experienced during early development may affect both adult phenotype and performance later during life. Phenotypic traits may hence be used to indicate past growing conditions and predict future survival probabilities. Relationships between phenotypic markers and future survival are, however, highly heterogeneous, possibly because poor‐ and high‐quality individuals cannot be morphologically discriminated when developing under good environmental conditions. Sub‐optimal breeding conditions, in contrast, may unmask poor‐quality individuals in a measurable way at the morphological level. We thus predict stronger associations between phenotype and performance under stress. In this field study, we test this hypothesis, experimentally challenging the homeostasis of great tit (Parus major) nestlings by short‐term deprivation of parental care, which had no immediate effect on nestling fitness. The experiment was replicated during two subsequent breeding seasons with contrasting ambient weather conditions. Experimental (short‐term) stress affected tarsus growth but not residual mass at fledging, whereas ambient (continuous) stress affected residual mass but not tarsus growth. Short‐term stress effects on tarsus length and tarsus fluctuating asymmetry were only apparent when ambient conditions were unfavourable. Residual mass and hatching date, but none of the other phenotypic traits, predicted local survival, whereby the strength of the relationship did not vary between both years. Because effects of stress on developmental homeostasis are likely to be trait‐specific and condition‐dependent, studies on the use of phenotypic markers for individual fitness should integrate multiple traits comprising different levels of developmental complexity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 103–110.
Keywords:developmental instability  fitness  fluctuating asymmetry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号