首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissecting the role of the Tir:Nck and Tir:IRTKS/IRSp53 signalling pathways in vivo
Authors:Valérie F Crepin  Francis Girard  Stephanie Schüller  Alan D Phillips  Aurelie Mousnier  Gad Frankel
Institution:1. Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, UK.;2. Centre for Paediatric Gastroenterology, Royal Free Hospital, London, UK.
Abstract:Attaching and effacing (A/E) lesions and actin polymerization, the hallmark of enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) infections, are dependent on the effector Tir. Phosphorylation of TirEPEC/CR Y474/1 leads to recruitment of Nck and neural Wiskott–Aldrich syndrome protein (N‐WASP) and strong actin polymerization in cultured cells. TirEPEC/CR also contains an Asn‐Pro‐Tyr (NPY454/1) motif, which triggers weak actin polymerization. In EHEC the NPY458 actin polymerization pathway is amplified by TccP/EspFU, which is recruited to Tir via IRSp53 and/or insulin receptor tyrosine kinase substrate (IRTKS). Here we used C. rodentium to investigate the different Tir signalling pathways in vivo. Following infection with wild‐type C. rodentium IRTKS, but not IRSp53, was recruited to the bacterial attachment sites. Similar results were seen after infection of human ileal explants with EHEC. Mutating Y471 or Y451 in TirCR abolished recruitment of Nck and IRTKS respectively, but did not affect recruitment of N‐WASP or A/E lesion formation. This suggests that despite their crucial role in actin polymerization in cultured cells the Tir:Nck and Tir:IRTKS pathways are not essential for N‐WASP recruitment or A/E lesion formation in vivo. Importantly, wild‐type C. rodentium out‐competed the tir tyrosine mutants during mixed infections. These results uncouple the Tir:Nck and Tir:IRTKS pathways from A/E lesion formation in vivo but assign them an important in vivo role.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号