首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo
Authors:Weifeng She  Valentin V Rybenkov
Institution:Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
Abstract:Structural maintenance of chromosome (SMC) proteins comprise the core of several specialized complexes that stabilize the global architecture of the chromosomes by dynamically linking distant DNA fragments. This reaction however remains poorly understood giving rise to numerous proposed mechanisms of the proteins. Using two novel assays, we investigated real‐time formation of DNA bridges by bacterial condensin MukBEF. We report that MukBEF can efficiently bridge two DNAs and that this reaction involves multiple steps. The reaction begins with the formation of a stable MukB–DNA complex, which can further capture another protein‐free DNA fragment. The initial tether is unstable but is quickly strengthened by additional MukBs. DNA bridging is modulated but is not strictly dependent on ATP and MukEF. The reaction revealed high preference for right‐handed DNA crossings indicating that bridging involves physical association of MukB with both DNAs. Our data establish a comprehensive view of DNA bridging by MukBEF, which could explain how SMCs establish both intra‐ and interchromosomal links inside the cell and indicate that DNA binding and bridging could be separately regulated.
Keywords:chromatin structure  DNA nano‐manipulations  magnetic tweezers  MukBEF  SMC proteins
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号