首页 | 本学科首页   官方微博 | 高级检索  
     


Ancestral TSH mechanism signals summer in a photoperiodic mammal
Authors:Hanon Elodie A  Lincoln Gerald A  Fustin Jean-Michel  Dardente Hugues  Masson-Pévet Mireille  Morgan Peter J  Hazlerigg David G
Affiliation:School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland.
Abstract:In mammals, day-length-sensitive (photoperiodic) seasonal breeding cycles depend on the pineal hormone melatonin, which modulates secretion of reproductive hormones by the anterior pituitary gland [1]. It is thought that melatonin acts in the hypothalamus to control reproduction through the release of neurosecretory signals into the pituitary portal blood supply, where they act on pituitary endocrine cells [2]. Contrastingly, we show here that during the reproductive response of Soay sheep exposed to summer day lengths, the reverse applies: Melatonin acts directly on anterior-pituitary cells, and these then relay the photoperiodic message back into the hypothalamus to control neuroendocrine output. The switch to long days causes melatonin-responsive cells in the pars tuberalis (PT) of the anterior pituitary to increase production of thyrotrophin (TSH). This acts locally on TSH-receptor-expressing cells in the adjacent mediobasal hypothalamus, leading to increased expression of type II thyroid hormone deiodinase (DIO2). DIO2 initiates the summer response by increasing hypothalamic tri-iodothyronine (T3) levels. These data and recent findings in quail [3] indicate that the TSH-expressing cells of the PT play an ancestral role in seasonal reproductive control in vertebrates. In mammals this provides the missing link between the pineal melatonin signal and thyroid-dependent seasonal biology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号