首页 | 本学科首页   官方微博 | 高级检索  
     


Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of synechocystis sp. PCC6803
Authors:Masuda Shinji  Hasegawa Koji  Ishii Asako  Ono Taka-aki
Affiliation:Laboratory for Photo-Biology (1), RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, 519-1399 Aoba, Aramaki, Aoba, Sendai 980-0845, Japan.
Abstract:The sensor of blue-light using FAD (BLUF) domain is the flavin-binding fold categorized to a new class of blue-light sensing domain found in AppA from Rhodobacter sphaeroides and PAC from Euglena gracilis, but little is known concerning the mechanism of blue-light perception. An open reading frame slr1694 in a cyanobacterium Synechocystis sp. PCC6803 encodes a protein possessing the BLUF domain. Here, a full-length Slr1694 protein retaining FAD was expressed and purified and found to be present as an oligomeric form (trimer or tetramer). Using the purified Slr1694, spectroscopic properties of Slr1694 were characterized. Slr1694 was found to show the same red-shift of flavin absorption and quenching of flavin fluorescence by illumination as those of AppA. These changes reversed in the dark although the rate of dark state regeneration was much faster in Slr1694 than AppA, indicating that Slr1694 is a blue-light receptor based on BLUF with the similar photocycle to that of AppA. The dark decay in D(2)O was nearly four times slower than in H(2)O. Light-induced Fourier transform infrared (FTIR) difference spectroscopy was applied to examine the light-induced structure change of a chromophore and apo-protein with deuteration and universal (13)C and (15)N isotope labeling. The FTIR results indicate that light excitation induced distinct changes in the amide I modes of peptide backbone but relatively limited changes in flavin chromophore. Light excitation predominantly weakened the C(4)=O and C(2)=O bonding and strengthened the N1C10a and/or C4aN5 bonding, indicating formational changes of the isoalloxazine ring II and III of FAD but little formational change in the isoalloxazine ring I. The photocycle of the BLUF is unique in the sense that light excitation leads to the structural rearrangements of the protein moieties coupled with a minimum formational change of the chromophore.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号