首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights
Authors:Gang Luo  Irini Angelidaki
Institution:1. Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
Abstract:In situ biogas upgrading was conducted by introducing H2 directly to the anaerobic reactor. As H2 addition is associated with consumption of the CO2 in the biogas reactor, pH increased to higher than 8.0 when manure alone was used as substrate. By co-digestion of manure with acidic whey, the pH in the anaerobic reactor with the addition of hydrogen could be maintained below 8.0, which did not have inhibition to the anaerobic process. The H2 distribution systems (diffusers with different pore sizes) and liquid mixing intensities were demonstrated to affect the gas-liquid mass transfer of H2 and the biogas composition. The best biogas composition (75:6.6:18.4) was obtained at stirring speed 150 rpm and using ceramic diffuser, while the biogas in the control reactor consisted of CH4 and CO2 at a ratio of 55:45. The consumed hydrogen was almost completely converted to CH4, and there was no significant accumulation of VFA in the effluent. The study showed that addition of hydrogen had positive effect on the methanogenesis, but had no obvious effect on the acetogenesis. Both hydrogenotrophic methanogenic activity and the concentration of coenzyme F420 involved in methanogenesis were increased. The archaeal community was also altered with the addition of hydrogen, and a Methanothermobacter thermautotrophicus related band appeared in a denaturing gradient gel electrophoresis gel from the sample of the reactor with hydrogen addition. Though the addition of hydrogen increased the dissolved hydrogen concentration, the degradation of propionate was still thermodynamically feasible at the reactor conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号