首页 | 本学科首页   官方微博 | 高级检索  
   检索      


GARD: a genetic algorithm for recombination detection
Authors:Kosakovsky Pond Sergei L  Posada David  Gravenor Michael B  Woelk Christopher H  Frost Simon D W
Institution:Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA. spond@ucsd.edu
Abstract:MOTIVATION: Phylogenetic and evolutionary inference can be severely misled if recombination is not accounted for, hence screening for it should be an essential component of nearly every comparative study. The evolution of recombinant sequences can not be properly explained by a single phylogenetic tree, but several phylogenies may be used to correctly model the evolution of non-recombinant fragments. RESULTS: We developed a likelihood-based model selection procedure that uses a genetic algorithm to search multiple sequence alignments for evidence of recombination breakpoints and identify putative recombinant sequences. GARD is an extensible and intuitive method that can be run efficiently in parallel. Extensive simulation studies show that the method nearly always outperforms other available tools, both in terms of power and accuracy and that the use of GARD to screen sequences for recombination ensures good statistical properties for methods aimed at detecting positive selection. AVAILABILITY: Freely available http://www.datamonkey.org/GARD/
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号