Secondary structure and thermostability of the phage P22 tailspike. XX. Analysis by Raman spectroscopy of the wild-type protein and a temperature-sensitive folding mutant |
| |
Authors: | D Sargent J M Benevides M H Yu J King G J Thomas |
| |
Affiliation: | Division of Cell Biology and Biophysics, School of Basic Life Sciences, University of Missouri-Kansas City 64110. |
| |
Abstract: | The thermostable tailspike endorhamnosidase of bacteriophage P22 has been investigated by laser Raman spectroscopy to determine the protein's secondary structure and the basis of its thermostability. The conformation of the native tailspike, determined by Raman amide I and amide III band analyses, is 52 to 61% beta-sheet, 24 to 27% alpha-helix, 15 to 21% beta-turn and 0 to 10% other structure types. The secondary structure of the wild-type tailspike, as monitored by the conformation-sensitive Raman amide bands, was stable to 80 degrees C, denatured reversibly between 80 and 90 degrees C, and irreversibly above 90 degrees C. The purified native form of a temperature-sensitive folding mutant (tsU38) contains secondary structures virtually identical to those in the wild-type in aqueous solution at physiological conditions (0.05 M-Na+ (pH 7.5], at both permissive (20 degrees C) and restrictive (40 degrees C) temperatures. This supports previous results showing that the mutational defect at 40 degrees C affects intermediates in the folding pathway rather than the native structure. At temperatures above 60 degrees C the wild-type and mutant forms were distinguishable: the reversible and irreversible denaturation thresholds were approximately 15 to 20 degrees C lower in the mutant than in the wild-type protein. The irreversible denaturation of the mutant tailspikes led to different aggregation/polymerization products from the wild-type, indicating that the mutation altered the unfolding pathway. In both cases only a small percentage of the native secondary structure was altered by irreversible thermal denaturation, indicating that the aggregated states retain considerable native structure. |
| |
Keywords: | |
|
|