首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ATP signaling site in the ARM domain of atrial natriuretic factor receptor guanylate cyclase
Authors:Beata Burczynska  Teresa Duda  Rameshwar K Sharma
Institution:(1) The Unit of Regulatory and Molecular Biology, Division of Biochemistry and Molecular Biology, Pennsylvania College of Optometry, Elkins Park, PA 19027, USA;(2) Present address: Department of Radiobiology and Cell Biology, Academy of Medical Sciences, Poznan, Poland
Abstract:Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single transmembrane spanning modular protein. It binds ANF to its extracellular module and activates its intracellular catalytic module located at its carboxyl end. This results in the accelerated production of cyclic GMP, which acts as a critical second messenger in decreasing blood pressure. Two mechanistic models have been proposed for the ANF signaling of ANF-RGC. One is ATP-dependent and the other ATP-independent. In the former, ATP works through the ARM (ATP-regulated transduction module) of ANF-RGC. This model has recently been challenged Antos et al. (2005) J Biol Chem 280:26928-26932] in support of the ATP-independent model. The present in-depth study analyzes the major principles of this challenge and concludes that the challenge lacks merit. The study then moves on to dissect the ATP mechanism of ANF signaling of ANF-RGC. It shows that the ATP photoaffinity probe, gamma(32)P]-8-azido-ATP, reacts with Cys(634) residue in the ATP-binding pocket of ARM, and also signals the ANF-dependent activation of ANF-RGC. The target site of the 8-azido (nitrene) group is between the Cys(634) and Val(635) bond of the ATP-binding pocket. Thus, the study experimentally validates the ARM model-predicted role of Val(635) in the folding pattern of the ATP-binding pocket. And, it also identifies another residue Cys(634) that along with eight already identified residues is a part of the fold around the adenine ring of the ATP pocket. This information establishes the direct role of ATP in ANF signal transduction model of ANF-RGC, and provides a significant advancement on the mechanism by which the ATP-dependent transduction model operates.
Keywords:ANF  ANF-RGC  Membrane guanylate cyclase  ATP-regulated ARM domain  ATP-photoaffinity-ARM site
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号