首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide
Authors:J L Sagripant  K H Kraemer
Institution:Molecular Biology Branch, Food and Drug Administration, Rockville, Maryland 20857.
Abstract:Oxidative DNA damage has been implicated in diverse biological processes including mutagenesis, carcinogenesis, aging, radiation effects, and chemotherapy. We examined the in vitro effect of low concentrations of Cu(II) or H2O2 alone and in combination on supercoiled plasmid DNA. As much as 10(-2) M Cu(II) or 10(-2) M H2O2 alone did not break the DNA. However, a mixture of 10(-6) M Cu(II) plus 10(-5) M H2O2 produced strand breaks and inactivated transforming ability. Strand breakage was proportional to incubation time, temperature, and Cu(II) and H2O2 concentrations. Abasic sites were not detected. Strand breakage was inhibited by metal chelators, catalase, and by high levels of free radical scavengers implying that Cu(II), Cu(I), H2O2, and .OH were involved in the reaction. The extent of DNA strand breakage was not affected by superoxide dismutase indicating that superoxide was not a major contributor to the DNA damage. DNA sequence analysis demonstrated that hot piperidine-sensitive DNA lesions were produced preferentially at sites of 2 or more adjacent guanosine residues. This sequence specificity was observed with Cu(II) plus H2O2 but not with Cu(I) alone. Polyguanosine sequence specificity for DNA damage induction appears to be unique among simple chemical systems. This reaction may be important in mechanisms of oxidative damage in vivo.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号