首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes.
Authors:J Ks and  E Sackmann
Institution:Physik Department, Technische Universität München, Germany.
Abstract:Shape transformations of vesicles of dimyristoylphosphatidylcholine (= DMPC) and palmitoyloleylphosphatidylcholine (= POPC) in ion-free water were induced by changing the area-to-volume ratio via temperature variations. Depending on the pretreatment we find several types of shape changes for DMPC (in pure water) at increasing area-to-volume ratio: (a) budding transitions leading to the formation of a chain of vesicles at further increase of the area-to-volume ratio, (b) discocyte-stomatocyte transitions, (c) reentrant dumbbell-pear-dumbbell transitions, and (d) spontaneous blebbing and/or tether formation of spherical vesicles. Beside these transitions a more exotic dumbbell-discocyte transition (e) was found which proceeded via local instabilities. Pears, discocytes, and stomatocytes are stable with respect to small temperature variations unless the excess area is close to values corresponding to limiting shapes of budded vesicles where temperature variations of less than or equal to 0.1 degree C lead to spontaneous budding to the inside or the outside. For POPC we observed only budding transitions to the inside leading either to chains of vesicles or to distributions of equally sized daughter vesicles protruding to the inside of the vesicle. Preliminary experiments concerning the effect of solutes are also reported. The first three types of shape transitions can be explained in terms of the bilayer coupling model assuming small differences in thermal expansivities of the two monolayers. This does not hold for the observed instabilities close to the limiting shapes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号